Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Viruses ; 12(6)2020 06 10.
Article in English | MEDLINE | ID: covidwho-1726022

ABSTRACT

There is currently debate about human coronavirus (HCoV) seasonality and pathogenicity, as epidemiological data are scarce. Here, we provide epidemiological and clinical features of HCoV patients with acute respiratory infection (ARI) examined in primary care general practice. We also describe HCoV seasonality over six influenza surveillance seasons (week 40 to 15 of each season) from the period 2014/2015 to 2019/2020 in Corsica (France). A sample of patients of all ages presenting for consultation for influenza-like illness (ILI) or ARI was included by physicians of the French Sentinelles Network during this period. Nasopharyngeal samples were tested for the presence of 21 respiratory pathogens by real-time RT-PCR. Among the 1389 ILI/ARI patients, 105 were positive for at least one HCoV (7.5%). On an annual basis, HCoVs circulated from week 48 (November) to weeks 14-15 (May) and peaked in week 6 (February). Overall, among the HCoV-positive patients detected in this study, HCoV-OC43 was the most commonly detected virus, followed by HCoV-NL63, HCoV-HKU1, and HCoV-229E. The HCoV detection rates varied significantly with age (p = 0.00005), with the age group 0-14 years accounting for 28.6% (n = 30) of HCoV-positive patients. Fever and malaise were less frequent in HCoV patients than in influenza patients, while sore throat, dyspnoea, rhinorrhoea, and conjunctivitis were more associated with HCoV positivity. In conclusion, this study demonstrates that HCoV subtypes appear in ARI/ILI patients seen in general practice, with characteristic outbreak patterns primarily in winter. This study also identified symptoms associated with HCoVs in patients with ARI/ILI. Further studies with representative samples should be conducted to provide additional insights into the epidemiology and clinical features of HCoVs.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus 229E, Human/isolation & purification , Coronavirus Infections/epidemiology , Coronavirus NL63, Human/isolation & purification , Coronavirus OC43, Human/isolation & purification , Respiratory Tract Infections/epidemiology , Adolescent , Adult , Aged , Child , Child, Preschool , Coronavirus Infections/diagnosis , Disease Outbreaks , Female , Humans , Infant , Infant, Newborn , Influenza, Human/epidemiology , Male , Middle Aged , Nasopharynx/virology , Primary Health Care , Real-Time Polymerase Chain Reaction , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , SARS-CoV-2 , Seasons , Young Adult
2.
Sci Rep ; 11(1): 19930, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1462026

ABSTRACT

Transmission of SARS-CoV-2 by aerosols has played a significant role in the rapid spread of COVID-19 across the globe. Indoor environments with inadequate ventilation pose a serious infection risk. Whilst vaccines suppress transmission, they are not 100% effective and the risk from variants and new viruses always remains. Consequently, many efforts have focused on ways to disinfect air. One such method involves use of minimally hazardous 222 nm far-UVC light. Whilst a small number of controlled experimental studies have been conducted, determining the efficacy of this approach is difficult because chamber or room geometry, and the air flow within them, influences both far-UVC illumination and aerosol dwell times. Fortunately, computational multiphysics modelling allows the inadequacy of dose-averaged assessment of viral inactivation to be overcome in these complex situations. This article presents the first validation of the WYVERN radiation-CFD code for far-UVC air-disinfection against survival fraction measurements, and the first measurement-informed modelling approach to estimating far-UVC susceptibility of viruses in air. As well as demonstrating the reliability of the code, at circa 70% higher, our findings indicate that aerosolized human coronaviruses are significantly more susceptible to far-UVC than previously thought.


Subject(s)
Coronavirus 229E, Human/radiation effects , Coronavirus Infections/prevention & control , Coronavirus OC43, Human/radiation effects , Disinfection/methods , Ultraviolet Rays , Virus Inactivation/radiation effects , Aerosols/isolation & purification , Air Microbiology , COVID-19/prevention & control , Computer Simulation , Coronavirus 229E, Human/isolation & purification , Coronavirus 229E, Human/physiology , Coronavirus OC43, Human/isolation & purification , Coronavirus OC43, Human/physiology , Disinfection/instrumentation , Equipment Design , Humans , Models, Biological
3.
J Clin Virol ; 136: 104754, 2021 03.
Article in English | MEDLINE | ID: covidwho-1385860

ABSTRACT

OBJECTIVES: The four seasonal coronaviruses 229E, NL63, OC43, and HKU1 are frequent causes of respiratory infections and show annual and seasonal variation. Increased understanding about these patterns could be informative about the epidemiology of SARS-CoV-2. METHODS: Results from PCR diagnostics for the seasonal coronaviruses, and other respiratory viruses, were obtained for 55,190 clinical samples analyzed at the Karolinska University Hospital, Stockholm, Sweden, between 14 September 2009 and 2 April 2020. RESULTS: Seasonal coronaviruses were detected in 2130 samples (3.9 %) and constituted 8.1 % of all virus detections. OC43 was most commonly detected (28.4 % of detections), followed by NL63 (24.0 %), HKU1 (17.6 %), and 229E (15.3 %). The overall fraction of positive samples was similar between seasons, but at species level there were distinct biennial alternating peak seasons for the Alphacoronaviruses, 229E and NL63, and the Betacoronaviruses, OC43 and HKU1, respectively. The Betacoronaviruses peaked earlier in the winter season (Dec-Jan) than the Alphacoronaviruses (Feb-Mar). Coronaviruses were detected across all ages, but diagnostics were more frequently requested for paediatric patients than adults and the elderly. OC43 and 229E incidence was relatively constant across age strata, while that of NL63 and HKU1 decreased with age. CONCLUSIONS: Both the Alphacoronaviruses and Betacoronaviruses showed alternating biennial winter incidence peaks, which suggests some type of immune mediated interaction. Symptomatic reinfections in adults and the elderly appear relatively common. Both findings may be of relevance for the epidemiology of SARS-CoV-2.


Subject(s)
COVID-19/epidemiology , Common Cold/epidemiology , Coronavirus 229E, Human/isolation & purification , Coronavirus NL63, Human/isolation & purification , Coronavirus OC43, Human/isolation & purification , Deltacoronavirus/isolation & purification , Female , Humans , Male , Retrospective Studies , SARS-CoV-2 , Seasons , Sweden
4.
Biosensors (Basel) ; 11(8)2021 Jul 26.
Article in English | MEDLINE | ID: covidwho-1325599

ABSTRACT

Cell-based assays are a valuable tool for examination of virus-host cell interactions and drug discovery processes, allowing for a more physiological setting compared to biochemical assays. Despite the fact that cell-based SPR assays are label-free and thus provide all the associated benefits, they have never been used to study viral growth kinetics and to predict drug antiviral response in cells. In this study, we prove the concept that the cell-based SPR assay can be applied in the kinetic analysis of the early stages of viral infection of cells and the antiviral drug activity in the infected cells. For this purpose, cells immobilized on the SPR slides were infected with human coronavirus HCov-229E and treated with hydroxychloroquine. The SPR response was measured at different time intervals within the early stages of infection. Methyl Thiazolyl Tetrazolium (MTT) assay was used to provide the reference data. We found that the results of the SPR and MTT assays were consistent, and SPR is a reliable tool in investigating virus-host cell interaction and the mechanism of action of viral inhibitors. SPR assay was more sensitive and accurate in the first hours of infection within the first replication cycle, whereas the MTT assay was not so effective. After the second replication cycle, noise was generated by the destruction of the cell layer and by the remnants of dead cells, and masks useful SPR signals.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus 229E, Human/physiology , Coronavirus Infections/drug therapy , Hydroxychloroquine/therapeutic use , Surface Plasmon Resonance/methods , Animals , Antiviral Agents/pharmacology , Chlorocebus aethiops , Coronavirus 229E, Human/drug effects , Coronavirus 229E, Human/isolation & purification , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , Hydroxychloroquine/pharmacology , Kinetics , Severity of Illness Index , Vero Cells
5.
Viruses ; 13(7)2021 07 13.
Article in English | MEDLINE | ID: covidwho-1314758

ABSTRACT

Human coronaviruses, including SARS-CoV-2, are known to spread mainly via close contact and respiratory droplets. However, other potential means of transmission may be present. Fomite-mediated transmission occurs when viruses are deposited onto a surface and then transfer to a subsequent individual. Surfaces can become contaminated directly from respiratory droplets or from a contaminated hand. Due to mask mandates in many countries around the world, the former is less likely. Hands can become contaminated if respiratory droplets are deposited on them (i.e., coughing or sneezing) or through contact with fecal material where human coronaviruses (HCoVs) can be shed. The focus of this paper is on whether human coronaviruses can transfer efficiently from contaminated hands to food or food contact surfaces. The surfaces chosen were: stainless steel, plastic, cucumber and apple. Transfer was first tested with cellular maintenance media and three viruses: two human coronaviruses, 229E and OC43, and murine norovirus-1, as a surrogate for human norovirus. There was no transfer for either of the human coronaviruses to any of the surfaces. Murine norovirus-1 did transfer to stainless steel, cucumber and apple, with transfer efficiencies of 9.19%, 5.95% and 0.329%, respectively. Human coronavirus OC43 transfer was then tested in the presence of fecal material, and transfer was observed for stainless steel (0.52%), cucumber (19.82%) and apple (15.51%) but not plastic. This study indicates that human coronaviruses do not transfer effectively from contaminated hands to contact surfaces without the presence of fecal material.


Subject(s)
COVID-19/transmission , Coronavirus Infections/transmission , Food Microbiology , SARS-CoV-2/physiology , COVID-19/virology , Cell Line , Common Cold/transmission , Coronavirus/isolation & purification , Coronavirus 229E, Human/isolation & purification , Coronavirus OC43, Human/isolation & purification , Equipment Contamination , Feces/virology , Fomites , Foodborne Diseases/virology , Humans , Norovirus/isolation & purification , Stainless Steel
6.
Pan Afr Med J ; 38: 244, 2021.
Article in English | MEDLINE | ID: covidwho-1257121

ABSTRACT

INTRODUCTION: acute respiratory tract infections (ARIs) are responsible for significant proportions of illnesses and deaths annually. Most of ARIs are of viral etiology, with human coronaviruses (HCoVs) playing a key role. This study was conducted prior to the outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) to provide evidence about the sero-epidemiology of HCoVs in rural areas of Ghana. METHODS: this was a cross-sectional study conducted as part of a large epidemiological study investigating the occurrence of respiratory viruses in 3 rural areas of Ghana; Buoyem, Kwamang and Forikrom. Serum samples were collected and tested for the presence of IgG-antibodies to three HCoVs; HCoV-229E, HCoV-OC43 and HCoV-NL63 using immunofluorescence assay. RESULTS: of 201 subjects enrolled into the study, 97 (48.3%) were positive for all three viruses. The most prevalent virus was HCoV-229E (23%; 95% CI: 17.2 - 29.3), followed by HCoV-OC43 (17%; 95% CI: 12.4 - 23.4), then HCoV-NL63 (8%, 95% CI: 4.6 - 12.6). Subjects in Kwamang had the highest sero-prevalence for HCoV-NL63 (68.8%). human coronaviruses-229E (41.3%) and HCoV-OC43 (45.7%) were much higher in Forikrom compared to the other study areas. There was however no statistical difference between place of origin and HCoVs positivity. Although blood group O+ and B+ were most common among the recruited subjects, there was no significant association (p = 0.163) between blood group and HCoV infection. CONCLUSION: this study reports a 48.3% sero-prevalence of HCoVs (OC43, NL63 and 229E) among rural communities in Ghana. The findings provide useful baseline data that could inform further sero-epidemiological studies on SARS-CoV-2 in Africa.


Subject(s)
Coronavirus 229E, Human/isolation & purification , Coronavirus Infections/epidemiology , Coronavirus NL63, Human/isolation & purification , Coronavirus OC43, Human/isolation & purification , Adult , Coronavirus Infections/virology , Cross-Sectional Studies , Female , Ghana/epidemiology , Humans , Immunoglobulin G/blood , Male , Middle Aged , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Rural Population/statistics & numerical data , Seroepidemiologic Studies , Young Adult
7.
Virol J ; 18(1): 89, 2021 04 30.
Article in English | MEDLINE | ID: covidwho-1209064

ABSTRACT

BACKGROUND: A novel coronavirus (SARS-CoV-2) emerging has put global public health institutes on high alert. Little is known about the epidemiology and clinical characteristics of human coronaviruses infections in relation to infections with other respiratory viruses. METHODS: From February 2017 to December 2019, 3660 respiratory samples submitted to Zhejiang Children Hospital with acute respiratory symptoms were tested for four human coronaviruses RNA by a novel two-tube multiplex reverse transcription polymerase chain reaction assays. Samples were also screened for the occurrence of SARS-CoV-2 by reverse transcription-PCR analysis. RESULTS: Coronavirus RNAs were detected in 144 (3.93%) specimens: HCoV-HKU1 in 38 specimens, HCoV-NL63 in 62 specimens, HCoV-OC43 in 38 specimens and HCoV-229E in 8 specimens. Genomes for SARS-CoV-2 were absent in all specimens by RT-PCR analysis during the study period. The majority of HCoV infections occurred during fall months. No significant differences in gender, sample type, year were seen across species. 37.5 to 52.6% of coronaviruses detected were in specimens testing positive for other respiratory viruses. Phylogenic analysis identified that Zhejiang coronaviruses belong to multiple lineages of the coronaviruses circulating in other countries and areas. CONCLUSION: Common HCoVs may have annual peaks of circulation in fall months in the Zhejiang province, China. Genetic relatedness to the coronaviruses in other regions suggests further surveillance on human coronaviruses in clinical samples are clearly needed to understand their patterns of activity and role in the emergence of novel coronaviruses.


Subject(s)
COVID-19/diagnosis , Multiplex Polymerase Chain Reaction/methods , Respiratory Tract Infections/virology , SARS-CoV-2/genetics , Adolescent , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19/complications , COVID-19/genetics , COVID-19/physiopathology , Child , Child, Preschool , China/epidemiology , Coronavirus/genetics , Coronavirus/isolation & purification , Coronavirus 229E, Human/genetics , Coronavirus 229E, Human/isolation & purification , Coronavirus NL63, Human/genetics , Coronavirus NL63, Human/isolation & purification , Coronavirus OC43, Human/genetics , Coronavirus OC43, Human/isolation & purification , Female , Hospitalization , Humans , Infant , Infant, Newborn , Male , Phylogeny , Respiratory Tract Infections/complications , Respiratory Tract Infections/etiology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics
8.
Virol J ; 18(1): 93, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1208555

ABSTRACT

BACKGROUND: SARS-CoV-2 infection can present with a broad clinical differential that includes many other respiratory viruses; therefore, accurate tests are crucial to distinguish true COVID-19 cases from pathogens that do not require urgent public health interventions. Co-circulation of other respiratory viruses is largely unknown during the COVID-19 pandemic but would inform strategies to rapidly and accurately test patients with respiratory symptoms. METHODS: This study retrospectively examined 298,415 respiratory specimens collected from symptomatic patients for SARS-CoV-2 testing in the three months since COVID-19 was initially documented in the province of Alberta, Canada (March-May, 2020). By focusing on 52,285 specimens that were also tested with the Luminex Respiratory Pathogen Panel for 17 other pathogens, this study examines the prevalence of 18 potentially co-circulating pathogens and their relative rates in prior years versus since COVID-19 emerged, including four endemic coronaviruses. RESULTS: SARS-CoV-2 was identified in 2.2% of all specimens. Parallel broad multiplex testing detected additional pathogens in only 3.4% of these SARS-CoV-2-positive specimens: significantly less than in SARS-CoV-2-negative specimens (p < 0.0001), suggesting very low rates of SARS-CoV-2 co-infection. Furthermore, the overall co-infection rate was significantly lower among specimens with SARS-CoV-2 detected (p < 0.0001). Finally, less than 0.005% of all specimens tested positive for both SARS-CoV-2 and any of the four endemic coronaviruses tested, strongly suggesting neither co-infection nor cross-reactivity between these coronaviruses. CONCLUSIONS: Broad respiratory pathogen testing rarely detected additional pathogens in SARS-CoV-2-positive specimens. While helpful to understand co-circulation of respiratory viruses causing similar symptoms as COVID-19, ultimately these broad tests were resource-intensive and inflexible in a time when clinical laboratories face unprecedented demand for respiratory virus testing, with further increases expected during influenza season. A transition from broad, multiplex tests toward streamlined diagnostic algorithms targeting respiratory pathogens of public health concern could simultaneously reduce the overall burden on clinical laboratories while prioritizing testing of pathogens of public health importance. This is particularly valuable with ongoing strains on testing resources, exacerbated during influenza seasons.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Coinfection/epidemiology , SARS-CoV-2/isolation & purification , Alberta/epidemiology , Canada/epidemiology , Coronavirus/isolation & purification , Coronavirus 229E, Human/isolation & purification , Coronavirus NL63, Human/isolation & purification , Coronavirus OC43, Human/isolation & purification , Cross Reactions , Female , Humans , Male , Orthomyxoviridae/isolation & purification , Pandemics , Prevalence , Retrospective Studies
9.
Risk Anal ; 41(5): 705-709, 2021 05.
Article in English | MEDLINE | ID: covidwho-1166285

ABSTRACT

Quantitative microbial risk assessment has been used to develop criteria for exposure to many microorganisms. In this article, the dose-response curve for Coronavirus 229E is used to develop preliminary risk-based exposure criteria for SARS-CoV-2 via the respiratory portals of entry.


Subject(s)
Air Microbiology , SARS-CoV-2/isolation & purification , COVID-19/transmission , COVID-19/virology , Coronavirus 229E, Human/isolation & purification , Coronavirus 229E, Human/pathogenicity , Humans , Inhalation Exposure , Models, Theoretical , Risk Assessment , SARS-CoV-2/pathogenicity
10.
Food Microbiol ; 98: 103780, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1131300

ABSTRACT

Human coronaviruses (HCoVs) are mainly associated with respiratory infections. However, there is evidence that highly pathogenic HCoVs, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East Respiratory Syndrome (MERS-CoV), infect the gastrointestinal (GI) tract and are shed in the fecal matter of the infected individuals. These observations have raised questions regarding the possibility of fecal-oral route as well as foodborne transmission of SARS-CoV-2 and MERS-CoV. Studies regarding the survival of HCoVs on inanimate surfaces demonstrate that these viruses can remain infectious for hours to days, however, there is limited data regarding the viral survival on fresh produce, which is usually consumed raw or with minimal heat processing. To address this knowledge gap, we examined the persistence of HCoV-229E, as a surrogate for highly pathogenic HCoVs, on the surface of commonly consumed fresh produce, including: apples, tomatoes, cucumbers and lettuce. Herein, we demonstrated that viral infectivity declines within a few hours post-inoculation (p.i) on apples and tomatoes, and no infectious virus was detected at 24h p.i, while the virus persists in infectious form for 72h p.i on cucumbers and lettuce. The stability of viral RNA was examined by droplet-digital RT-PCR (ddRT-PCR), and it was observed that there is no considerable reduction in viral RNA within 72h p.i.


Subject(s)
Coronavirus 229E, Human/isolation & purification , Food Contamination/analysis , Fruit/virology , Vegetables/virology , Cell Line , Humans , Ontario , RNA, Viral/isolation & purification
11.
Arch Virol ; 166(3): 929-933, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1046769

ABSTRACT

This is the first study of respiratory infections in Córdoba, Argentina, caused by endemic human coronavirus (HCoV)-OC43 and HCOV-229E, which circulated during 2011-2012 at a 3% rate, either as single or multiple infections. They were detected mainly in children, but HCoV-229E was also found in adults. HCoV-229E was detected in five out of 631 samples (0.8%), and HCoV-OC43 was found in 14 out of 631 (2.2%) samples. Clinical manifestations ranged from fever to respiratory distress, and a significant association of HCoV-229E with asthma was observed. Further studies and surveillance are needed to provide better clinical insights, early diagnosis, and medical care of patients, as well as to contribute to epidemiology modeling and prevention.


Subject(s)
Common Cold/epidemiology , Coronavirus 229E, Human/isolation & purification , Coronavirus Infections/epidemiology , Coronavirus OC43, Human/isolation & purification , Adolescent , Adult , Aged , Argentina , Child , Child, Preschool , Common Cold/virology , Coronavirus 229E, Human/genetics , Coronavirus Infections/virology , Coronavirus OC43, Human/genetics , Cross-Sectional Studies , Humans , Infant , Middle Aged , Retrospective Studies , Seasons , Young Adult
12.
J Microbiol Biotechnol ; 30(10): 1495-1499, 2020 Oct 28.
Article in English | MEDLINE | ID: covidwho-914599

ABSTRACT

The study of climate and respiratory viral infections using big data may enable the recognition and interpretation of relationships between disease occurrence and climatic variables. In this study, realtime reverse transcription quantitative PCR (qPCR) methods were used to identify Human respiratory coronaviruses (HCoV). infections in patients below 10 years of age with respiratory infections who visited Dankook University Hospital in Cheonan, South Korea, from January 1, 2012, to December 31, 2018. Out of the 9010 patients who underwent respiratory virus real-time reverse transcription qPCR test, 364 tested positive for HCoV infections. Among these 364 patients, 72.8% (n = 265) were below 10 years of age. Data regarding the frequency of infections was used to uncover the seasonal pattern of the two viral strains, which was then compared with local meteorological data for the same time period. HCoV-229E and HCoV-OC43 showed high infection rates in patients below 10 years of age. There was a negative relationship between HCoV-229E and HCoV-OC43 infections with air temperature and wind-chill temperatures. Both HCoV-229E and HCoV-OC43 rates of infection were positively related to atmospheric pressure, while HCoV-229E was also positively associated with particulate matter concentrations. Our results suggest that climatic variables affect the rate in which children below 10 years of age are infected with HCoV. These findings may help to predict when prevention strategies may be most effective.


Subject(s)
Climate , Coronavirus Infections/epidemiology , Coronavirus OC43, Human , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Child , Child, Preschool , Coronavirus/genetics , Coronavirus 229E, Human/isolation & purification , Coronavirus 229E, Human/metabolism , Coronavirus OC43, Human/genetics , Coronavirus OC43, Human/isolation & purification , Coronavirus OC43, Human/metabolism , Female , Humans , Infant , Infant, Newborn , Male , Prevalence , Real-Time Polymerase Chain Reaction , Republic of Korea/epidemiology , Retrospective Studies
13.
Biosens Bioelectron ; 170: 112656, 2020 Dec 15.
Article in English | MEDLINE | ID: covidwho-797526

ABSTRACT

Point-of-care risk assessment (PCRA) for airborne viruses requires a system that can enrich low-concentration airborne viruses dispersed in field environments into a small volume of liquid. In this study, airborne virus particles were collected to a degree above the limit of detection (LOD) for a real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). This study employed an electrostatic air sampler to capture aerosolized test viruses (human coronavirus 229E (HCoV-229E), influenza A virus subtype H1N1 (A/H1N1), and influenza A virus subtype H3N2 (A/H3N2)) in a continuously flowing liquid (aerosol-to-hydrosol (ATH) enrichment) and a concanavalin A (ConA)-coated magnetic particles (CMPs)-installed fluidic channel for simultaneous hydrosol-to-hydrosol (HTH) enrichment. The air sampler's ATH enrichment capacity (EC) was evaluated using the aerosol counting method. In contrast, the HTH EC for the ATH-collected sample was evaluated using transmission-electron-microscopy (TEM)-based image analysis and real-time qRT-PCR assay. For example, the ATH EC for HCoV-229E was up to 67,000, resulting in a viral concentration of 0.08 PFU/mL (in a liquid sample) for a viral epidemic scenario of 1.2 PFU/m3 (in air). The real-time qRT-PCR assay result for this liquid sample was "non-detectable" however, subsequent HTH enrichment for 10 min caused the "non-detectable" sample to become "detectable" (cycle threshold (CT) value of 33.8 ± 0.06).


Subject(s)
Biosensing Techniques/instrumentation , Coronavirus 229E, Human/isolation & purification , Coronavirus Infections/virology , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza, Human/virology , Aerosols/analysis , Air Microbiology , Biosensing Techniques/economics , Coronavirus 229E, Human/genetics , Environmental Monitoring/economics , Environmental Monitoring/instrumentation , Equipment Design , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL